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Abstract

Multi-dimensional integration arises in a variety of disciples including particle physics, PDEs with
random coefficients, statistical mechanics, and notably mathematical finance. In this report, we use a
variety of methods to estimate a multivariate integral, namely classic Monte Carlo, quasi-Monte Carlo,
and lattice techniques. We consider a simple two-dimensional function to study the aspects of each
method. Numerical results are provided for each technique as well as comparisons in terms of error
convergence between methods. From a two-dimensional domain, we discuss difficulties and limitations
in the extension into higher dimensions among the various approaches.
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1 Introduction

Applications of numerical integration are hidden within many economic and physical disciplines including
particle physics, statistical mechanics and PDEs with random coefficients [4]. Its most notable appearance is,
however, in mathematical finance. Consider the famous Collateralized Mortgage Obligation (CMO) problem
involving the estimation of current cash flows from a pool of mortgages [8]. It is typical for a prospective
homeowner to sign a 30-year mortgage, with the option of repaying the loan every month. Of course the
likelihood of repayment is dependent on interest rate at the given time. As a result, the problem at hand
becomes a 360 dimensional (or variable) expected value, as there are 360 possible payment occasions. These
types of problems fueled the need for new approaches not yet familiar to the computational field of numerical
integration.

There are many techniques for numerical differentiation, or quadrature, which produce convincing ap-
proximation to the actual integral value. Although simplistic, such a technique was perhaps first explored in
an introductory calculus course; the “Trapezoid Rule.” Recall a continuous function f(x) over the interval
(a, b) whose integral can be approximated using the mere knowledge of∫ x1

x0

f(x) dx ≈ w

2
(y0 + y1) where w = x1 − x0

Similarly, Simpson’s Rule interpolates three data points yielding an even better approximation using
a degree two polynomial. (In fact, Matlab’s built in quad function uses an adaptive Simpson’s rule to
numerically compute an integral value.) Of course, this begs the question of why must we limit ourselves
to just two or three data points when we can partisan our interval into two or more panels? Such com-
posite rules consider the subdivision of our overall interval (a, b) and simply compile the sum over all panel
approximations.

These well-known numerical methods are certainly appropriate and practical for functions whose do-
mains are of limited dimensions and are easily separable. However, as R increases, conventional methods
quickly become inconvenient, even for a computer. The phrase the curse of dimensionality, first stated by
Richard Bellman in the mid 1950’s, illustrates the difficulties of high dimensional problems [1]. We will
explore a popular family of techniques for numerical integration, the methods of Monte Carlo.

There are many variants of Monte Carlo integration, and even within each variant exists multiple
ways of definition. It is essential to first understand that the umbrella term can correlate to several unique
procedures. The underlying theme, however, considers a point set Pn to approximate finite integrals spanning
multiple dimensions. The way in which Pn is defined, gives life to various classes of Monte Carlo estimation.
Like most numerical methods, Monte Carlo aims to estimate integral values by preforming a shift from a
continuous setting to a discrete.

1.1 Defining Random

Linguistically, the term random may be used in conversation with ease. However, we will see that intuition
and mathematical rigor are truly at battle. Random number generation (RNG) has been a subject of debate
among mathematicians for decades. There are two main divisions of mathematical randomness, pseudo and
quasi1 Under pseudo-random generation, “samples” or outputs are independent and identically distributed
(IID). That is, a given output x is independent of all other xj , for i 6= j and belongs to the same probability
distribution. For example, Matlabs rand function considers a uniform distribution, while randn uses the
normal, or Gaussian distribution. Here, we are in a sense at least “pretending” to be random. The first
portion of this paper will address simple and classic Monte Carlo techniques which use strictly (pseudo)
random number generation. We will often refer to this process as CMC.

In contrast, under quasi -random generation, mutual independence among outputs is sacrificed, and our
sample space is no longer IID. Simply put, the “choosing” of one output is directly based on a previous
output. This fact alone implies the usage of deterministic sequences for quasi-random generation. Such
common sequences are the Halton, Niederreiter, Sobol and Faure sequences (all named after their creator),
as they share the same characteristic of low discrepancy. We will touch upon some of these sequences and

1The prefix pseudo comes from the Greek word meaning “falsehood”, implying a misleading appearance of something genuine.
Quasi is Latin for “almost”.
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their characteristics later. Any Monte Carlo technique under quasi-random simulation will often be refereed
to as QMC for classic Monte Carlo.

2 Classic Monte Carlo Techniques

2.1 Method 1: Simply Random

Suppose we wish to estimate
∫
Ω
f(x) dx over some nth-dimensional domain Ω. As a trivial example consid-

ering calculating the area of a quarter circle with radius r = 0.5.

I =

∫ r

0

√
r2 − x2 dx

Now consider some easy to compute area, Γ, such that Ω ⊆ Γ. For our example, let Γ be defined by the
space [0, r] × [0, r]. Generate n random points that lie within Γ and define n̂ to be the number of points
generated that also lie in Ω. In this procedure, we are preforming a sequence of Bernoulli trials, as each
output has exactly two results; either xi ∈ Ω or xi 6∈ Ω. The ratio of n̂ points that live within Ω verses n
total points multiplied by our known area Γ gives us an approximation to I. We will refer to this process as
“Method 1”.

I ≈ Γ
n̂

n
.

2.2 Method 2: The Formal Definition

Another approach incorporates the function’s average value into the process. Recall that the average value
of a (continuous) function is defined by

faverage =
1

b− a

∫ b

a

f(x) dx

Extending this idea to numerical estimation, consider the set {xi} defined by n random points in Ω, then
the average value of f , denoted as µn, would be approximated by

faverage = µn ≈ 1

n

n∑
i=1

f(xi).

Then, the estimated integral value, I, would simply be µn

∫
Ω
dx. Continuing with our example,

∫
Ω
dx

would just be length r = 0.5. Note that when specifically using the phrase ”classic Monte Carlo”, most texts
consider the above expression, yet over the unit hypercube, Ω ∈ (0, 1)

d
. Figure 1 below demonstrates the

difference between each method.
The Matlab file area_circle.m (see Appendix 7.1) computes Monte Carlo integration using both

methods described above for estimating a quarter of a circle with radius 0.5. The simulation is carried out
for n =10, 100, 1,000, 10,000 and 100,000 randomly generated points. Note that the script calls the function
rand, so each output has the same probability of “being hit” Table 1 and Table 2 provides numerical results.

n Estimate Absolute Error Relative Error
101 0.225000 2.865046e-02 1.459156e-01
102 0.195000 1.349541e-03 6.873155e-03
103 0.192500 3.849541e-03 1.960555e-02
104 0.198650 2.300459e-03 1.171614e-02
105 0.196398 4.795915e-05 2.442539e-04

Table 1: Monte Carlo Method 1

Both estimation techniques produce strikingly precise results. Even with just n = 100 randomly gen-
erated points, Method 1 yields an output of 0.195, with an absolute error within four decimal places of
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Figure 1: Comparison of Method 1 and Method 2

n Estimate Absolute Error Relative Error
101 0.189667 6.682937e-03 3.403592e-02
102 0.200077 3.727526e-03 1.898414e-02
103 0.194347 2.002913e-03 1.020075e-02
104 0.196992 6.424138e-04 3.271787e-03
105 0.196511 1.617766e-04 8.239213e-04

Table 2: Monte Carlo Method 2
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Figure 2: Convergence Rates of Method 1 and Method 2

accuracy. Note that without the presence of a seed in line 17 of area_circle.m, the estimated outputs
would fluctuate slightly, producing a different error for each simulation. With this in mind, as errors are so

7



close in value between the methods, it would be a fallacy to favor one method over the other based on the
above evidence alone. At a glance, we cannot conclude which method is more desirable as Figure 2 displays
near identical convergent rates.

2.3 Method 3: The Importance of Sampling

Depending on the integrand, simple Monte Carlo techniques can exhibit poor efficiency when randomly
selected points and their associated function values contribute very little to the overall integral. We can
improve our estimation by assessing weights to certain regions in Ω with a little knowledge of the behavior
of the function at hand. The implementation of a probability density function (PDF) p(x) will allows us to
grant precedence of certain regions over others in Ω. In other words, the density of selected points will be
greater where function values are greater. Determining an appropriate density function can be challenging
but will save us computation time/storage. Consider the following characteristics of a selected p(x).

(i) Like all PDFs, p(x) ≥ 0 (as probability is never be negative).

(ii) Also,
∫∞
−∞ p(x) dx = 1

(iii) Regions where f(x) is small, p(x) is also small; meaning that there is a low probability that points in
this region will be selected.

(iv) Similarly, regions where f(x) is large, p(x) is also large. This insures that we are likely to sample from
regions that contribute significantly to the integral.

We formulate an appropriate p(x) based on the behavior of our original function f(x) =
√
r2 − x2. One

way to approach such a formulation is to first divide the region of interest into n panels. Of course, the more
divisions, the better p(x) will fit with f(x). For the sake of simplicity, we divide our region [0, 0.5] into 10
equal panels. This leads to the creation of a discrete piecewise function, p(x). Define wi to be the midpoint
of each panel. So W = {wi : 1 ≤ i ≤ n} = [0.025 : 0.05 : 0.475]. Then, let p(x) is the following step function

p(wj) =
f(wj)∑10
i=1 f(wi)

for i, j = 1, 2, . . . , 10

on the interval [0, 0.5] and 0 elsewhere. Note that our p(x) is more precisely a probability mass function
(PMF) by definition. Also, notice that characteristic (ii)is satisfied as∫ ∞

−∞
p(x) dx =

10∑
j=1

p(xj) =
f(w1) + f(w2) + · · ·+ f(w10)∑10

i=1 f(wi)
= 1

Loosely speaking, p(x) tells use what percentage of points should be sampled from the associated jth panel.
Let’s again carry out simulations with n = 10, 100, 1,000, 10,000, 100,000. (See Appendix 7.2 for script
details.)

n Estimate Absolute Error Relative Error
101 0.192034 4.316001e-03 2.198121e-02
102 0.196620 2.700119e-04 1.375159e-03
103 0.196124 2.253721e-04 1.147811e-03
104 0.196273 7.697253e-05 3.920179e-04
105 0.196352 2.222748e-06 1.132036e-05

Table 3: Monte Carlo Method 3

Notice that (ii) is satisfied as P = [0.1267, 0.1255, 0.1229, 0.1189, 0.1133, 0.1060 , 0.0964, 0.0839,
0.0668, 0.0396] and sum(P*0.05) = 1. Figure 3 clearly validates the remaining three conditions, (i),(iii) and
(iv). With n = 100,000 we have a computed integral value of 0.196352 with an absolute error of 2.2× 10−6.
Comparing convergence graphs we see a slightly faster convergence rate with Method 3, specifically when
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Figure 3: Convergence rates of Method 3

compared to Method 2. Yet these differences are not extremely noteworthy for the same reason mentioned
before. Even with added complexities, Method 1 (the simplest in design) yields relatively compatible results
to the more elaborate Method 3. This observation is surely a consequence of the chosen function; particularly
it’s symmetric behavior. Are there better, faster, techniques of numerical estimation that we can consider?

3 Quasi-Random and Discrepancy

Recall that under quasi-random generation, independence among outputs is no longer considered. Clas-
sic Monte Carlo methods, especially with small values of n, can be unfavorable due to the occurrence of
clustering or just the opposite, having pockets of empty space. Quasi-Monte Carlo techniques strive to
fix this inefficiency by generating points that better represent the overall domain. As mentioned before,
such techniques exploit behaviors of low-discrepancy sequences. Discrepancy speaks to the uniformity of
distribution among points in space. In simple terms, a sequence carries low-discrepancy if its numbers are
equi-distributed within a given volume or hyper-volume [3]. Formally, discrepancy is defined as,

D(J, Pn) = |(A(J)/n)− V (J)|

where the region J is a subset of Ω, our region of interest, A(J) is the number of points in J , V (j) is the
“volume” of J , n is the total number points sampled and Pn is the point set. More specifically for our
example, Ω = [0, 0.5] × [0, 0.5] and J is the quarter circle located in Quadrant I so that V (J) = π/16. In
other words, discrepancy is the difference between the proportion of points living in a subspace and the true
volume of the space [3]. Of course, if this difference is insignificant in value, then our randomly generated
points accurately represent the overall space and the method, or sequence, of generation is of low-discrepancy.
The idea of discrepancy can be applied to point sets living in any dimension d. If D(J, Pn) ≤ O(n−1lnnd)
then the point set is said to have low discrepancy, yet there is no official numerical cut-off.

3.1 Halton Sequence

One commonly used low-discrepancy sequence for quasi-random generation is the Halton sequence, first
introduced to numerical integration in the 1950’s [9]. The idea is simple. First, let p be a prime number. If
we are interested in a total of n quasi-random points over [0, 1], then we would convert each integer 1,2,3...n
in base p notation. If the kth integer is represented by bibi−1...b2b1, then the kth random number would
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simply be 0.b1b2...bi−1bi. In most applications the number generated in base p would then be converted back
to decimal form.

For example, let’s consider the first prime number, p = 2 to be our base and suppose we are interested
in generating five random numbers. The set of integers 1, 2, 3, 4, 5 in base p = 2 arithmetic would of course
be 1, 10, 11, 100, 101. Reversing the digits and moving the decimal to the left side, our set of randomly
generated numbers is 0.1, 0.01, 0.11, 0.001, 0.101. Lastly, converting this binary sequence back to decimal
form, our final set of the first five numbers of the Halton sequence in base 2 is 0.5, 0.25, 0.75, 0.125, 0.625.
It is important to note that the Halton sequence simply extends the idea of the Van der Corput sequence
(1935) into higher dimensions, as the Van der Corput sequence only considers the first dimension and uses
base p = 2 by definition [9].

The difference between pseudo-random number generation and quasi is best understood visually. Let’s
compare 500 pseudo-random points in R2 and 500 quasi-random points in R6. To be clear, we are generating
a Halton sequence in base 2, 3, 5, 7, 11, and 13 as these are the first six prime numbers. For the sake of
display, let’s only plot two consecutive dimensions together.
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Quasi-Random in R3/R4

Figure 4: Quasi-Random Generation

We see that under quasi-random generation, points sampled are self-avoiding and cover a space much
more uniformly. The three quasi-random plots, R2 vs R1, R3 vs R4 and R5 vs R6 are clearly better
for numerical integration purposes in comparison to pseudo-random generation in R2. However, we do
see a considerable amount of “white space” in our last graph, implying that numerical integration aided
by quasi-random number generation (defined by the Halton sequence specifically) may lose its appeal for
problems living in higher dimensions. We will touch upon this idea later.

3.2 Quasi-Monte Carlo Techniques

Let’s consider Methods 1, 2 and 3 now using quasi-random generation. As our problem lives only in R2,
numbers generated in the x direction will be defined by the Halton sequence in base 2 and in base 3 for the
y direction.

Referring to Figure 5 we see a comparison for all six Monte Carlo techniques simulated thus far. As with
most numerical methods, we are concerned with efficiency; often defined by computation time or number
of iterations. For this reason, our region of focus will be of lower values of n. Graphically, our results
are interesting about n = 1000. Comparing the type of number generation among methods, quasi-Monte
Carlo out preforms classic (pseudo) Monte Carlo by a whole order in Methods 1 and 2. In CMC-Method
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Figure 5: Classic and Quasi MC Convergence Rates

1, absolute error was approximately 2.3 × 10−3 while the QMC absolute error was roughly 2 × 10−4 and
6.4× 10−4 versus 4.1× 10−5 respectively for Method 2. However CMC-Method 3 and QMC-Method 3 had
similar absolute errors at n ≈ 10,000, yet QMC was still slightly better. Overall CMC and QMC Method 1
did not perform as well as the other four techniques. This result is not surprising as recall that Method 1
simply generated points randomly in both directions while Methods 2 and 3 considered function values in
their simulations (although in different ways). In general, QMC Methods produced better estimates to the
integral I than its pseudo CMC counter parts. Table 4 summarizes numerical results for QMC Methods 1,
2, and 3. See script QMCmethods123.m under Appendix 7.4 for details.

Method n Estimate Absolute Error Relative Error

Method 1

101 0.225000 2.865046e-02 1.459156e-01
102 0.202500 6.150459e-03 3.132403e-02
103 0.196750 4.004592e-04 2.039522e-03
104 0.196550 2.004592e-04 1.020930e-03
105 0.196380 3.045915e-05 1.551272e-04

Method 2

101 0.211360 1.501042e-02 7.644742e-02
102 0.198840 2.490747e-03 1.268527e-02
103 0.196650 3.001461e-04 1.528632e-03
104 0.196391 4.098532e-05 2.087365e-04
105 0.196355 5.139678e-06 2.617617e-05

Method 3

101 0.197026 6.761737e-04 3.443725e-03
102 0.197756 1.406438e-03 7.162928e-03
103 0.196673 3.235214e-04 1.647681e-03
104 0.196404 5.472564e-05 2.787154e-04
105 0.196356 6.721894e-06 3.423432e-05

Table 4: Quasi-Monte Carlo Methods 1, 2 and 3
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4 Lattices Rules

A slightly different quasi-Monte Carlo approach implements the idea of a lattice, used almost exclusively
in numerical integration. Lattice concepts parallel QMC tactics seen previously as it magnifies the beauty
of low-discrepancy. The process of quasi-random number generation in d dimensions is produced simply
by defining each coordinate direction as some low discrepancy sequence in d consecutive primes, base p.
Here, each dimension was considered separately. In contrast, lattices, in it’s most general form, project all
necessary dimensions simultaneously through the use of a generating vector. The formation of lattice points
are so systematic that they form a group under the operation of addition modulo the integers [5]. Sequences
used previously for QMC do not reflect this quality however.

In the late 1950’s, number theorists (notably Hlawka and Korobov) developed lattice rules which served
as a guide to which styles of lattices should be used in the context numerical integration [5]. The oldest and
most simplistic in design is known as a rank-1 lattice rule. Rank refers to the number of summations used
in the expression (in canonical form) [10]. A rank-1 lattice rule is defined as

I ≈ 1

N

N∑
k=1

f
({

k
z

N

})
where n is the number of points and z is the generation vector, z ∈ Zd. The braces indicate that each
component to is be replaced by it’s fractional part in [0,1). This is why initially, only periodic functions
considered the use of a lattice rule as they are cyclic as well [10]. Each zi in the generating vector is restricted
to the set {1, 2, ...n − 1} and gcd(zi, n)=1; greatly restricting the defining vector. For rank 1 lattice rules,
the point setPn belongs to a subgroup of the finite additive Abelian, where Pn satisfies the following five
axioms of the (additive) Abelian group found in abstract algebra [6]. ∀z, x, z ∈ Pn

(i) Closure: x+ y ∈ Pn

(ii) Associative: (xy) + z = x+ (y + z)

(iii) Identitiy: ∃a ∈ Pn such that x+ a = a+ x = x

(iv) Inverse: ∃(−x) ∈ Pn such that x+ (−x) = 0

(v) Communative: x+ y = y + x

4.1 Fibonacci Lattice Rule

A common rank-1 lattice rule is defined by Fibonacci numbers. With n = Fk points, we defined our
generating vector v as (1, Fk−1), where Fk is the kth number in the Fibonacci sequence. Figure 6 shows both
a Fibonacci lattice rule with n=89 points and z = (1, 55) and for comparison, an elementary (grid) lattice,
defined simply by the product rule.

4.2 Monte Carlo via Lattice Techniques

4.3 Method 1

Let’s now consider how lattice techniques compare to previous CMC and QMC methods. The grid lattice
is limited to values of n number of points that satisfy

√
n ≡ 0 (mod 1) (i.e., n must be a perfect square.).

The Fibonacci lattice has even more restrictive on the number of points generated as n must be a Fibonacci
number. We will carry out 24 simulations starting with the 2nd Fibonacci number, n = 1, followed by
the 3rd, n = 2, then n = 3, n = 5, etc., until we reach the 25th Fibonacci number, n = 75,025. For the
sake of variety, we will also consider another low-discrepancy sequence for quasi-random number generation
the Sobol sequence. Note that this sequence generates identical samples in the first dimension (i.e., the
x-direction) as the Halton base-2 sequence. Consequently, results would be identical for Methods 2 and 3,
which is why we will not discuss the use of this particular sequence in detail. Figure 7 and Tables 5, 6 and 7
summarizes our results for Method 1 via grid and Fibonacci lattices. (See Appendix 7.7 for script details.)
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Figure 6: Lattices

n Estimate Absolute Error Relative Error
8 0.218750 2.240046e-02 1.140846e-01
89 0.196629 2.796726e-04 1.424361e-03
987 0.196809 4.589698e-04 2.337514e-03

6765 0.196268 8.198726e-05 4.175577e-04
75025 0.196358 8.339857e-06 4.247454e-05

Table 5: Fibonacci Lattice

n Estimate Absolute Error Relative Error
9 0.222222 2.587268e-02 1.317685e-01

100 0.182500 1.384954e-02 7.053513e-02
961 0.197711 1.361177e-03 6.932418e-03

10000 0.194725 1.624541e-03 8.273719e-03
99856 0.195890 4.599599e-04 2.342556e-03

Table 6: Product Rule Lattice

n Estimate Absolute Error Relative Error
101 0.225000 2.865046e-02 1.459156e-01
102 0.202500 6.150459e-03 3.132403e-02
103 0.196500 1.504592e-04 7.662822e-04
104 0.196375 2.545915e-05 1.296624e-04
105 0.196348 2.040849e-06 1.039396e-05

Table 7: QMC via Sobol-Method 1

Figure 7 shows convergence rates expressed with exact numerical values, as well as with a linear trend.
It is no surprise that the grid lattice converged the slowest as it the most inefficient in design. Notably,
it had a similar trend to CMC-Method 1. The Fibonacci lattice, in contrast, performed quite well. What
is most alarming is its error at extremely small values of n. For example, at n=89 the estimated integral
I is within 4 decimal places of accuracy. At this value of n the Fibonacci lattice produces better results
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than CMC-Methods 1 and 3, QMC-Methods 1,2 and 3 and the grid lattice for n=100 points. Figure 7 also
shows the importance of sequence choice under quasi-Monte Carlo as QMC-Halton and QMC-Sobol display
dissimilar convergence rates.
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Figure 7: Lattice, QMC and CMC Convergence Rates via Method 1

4.4 Method 2

Recall that Method 2 uses the function’s average value, estimated numerical in a discrete setting, to assess
it’s approximated integral value. Sampled values spanned only in the x direction. In the context of a d=
1 lattice, the generating vector z would simply be 1, clearly not a very interesting lattice. This resulting
processes is identical to the well known ”left Riemann sum rule” where the domain is divided into n equal
rectangles or panels. For comparison, we will consider a general rank-1, 1-dimensional ”lattice” for n = 10k

for k = 1,2,...,5. Refer to Figure 8 for a comparison of all variants of Method 2 and Table 8 for numerical
results of Method 2 via lattice.

n Estimate Absolute Error Relative Error
101 0.206532 1.018285e-02 5.186085e-02
102 0.197526 1.176524e-03 5.991986e-03
103 0.196472 1.226758e-04 6.247829e-04
104 0.196362 1.242650e-05 6.328765e-05
105 0.196351 1.247676e-06 6.354360e-06

Table 8: Lattice Method 2

4.5 Method 3

Here, we will use the same ”lattice” as seen in Method 2. Under Method 3, we assigned weights to appropriate
regions in Ω, through the use of a PDF, p(x). In the context of our problem, p(x) indicated what percentage
of overall n points would fall in each of the 10 panels. We will need to scale and shift our lattice appropriately
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Figure 8: Convergence Rates of Method 2 Techniques

as seen in QMC-Method 3 with the Halton sequence. For example, for n=100, the PDF assigned 12 points
to panel 2, spanning [0.05, 0.1]. Our lattice with n= 100 is simply defined by the set

P100 = {k 1
100} for k = 1,2,..,100

with P100 cycling back to its fractional part in (0, 1], 0. Yet, we must scale down the lattice by r/10 = 0.05
(as there are 10 panels) and preform a positive shift 0.05, as we are in the second panel. The resulting point
set for panel two would be the first 12 points in the above lattice, scaled and shifted as described;

P12 = 0.05{k 1
100}+ 0.05 for k = 1,2,..,12, within the region (0.05, 0.1].

Figure 9 compares convergence rates for all three techniques under Method 3. The lattice technique did not
perform well compared to CMC and QMC Methods 2. Looking at the second figure, we can see exactly how
x values (and their corresponding y evaluations) were selected for n = 100 total points. Notice that points
were selected from the left side of each panel, as defined by our rank-1, d=1 lattice. Referring to Table 9,
the resulting computed integral value is over-estimated four out of the five simulations, with the exception of
n = 10. If, in contrast, our function was monotonically increasing, we would then see an under-estimation.
Overall, the Fibonacci lattice under Method 1 provided the most precise integral estimations for low values
of n in comparison lattice Methods 2 and 3. See Appendix 7.8 for details about lattice Methods 2 and 3.

n Estimate Absolute Error Relative Error
101 0.181532 1.481715e-02 7.546310e-02
102 0.201422 5.072678e-03 2.583494e-02
103 0.201044 4.694347e-03 2.390811e-02
104 0.201013 4.663402e-03 2.375051e-02
105 0.201011 4.661143e-03 2.373901e-02

Table 9: Lattice Method 3

5 Results

We have considered now three underlying classes of Monte Carlo integration; classic Monte Carlo, quasi-
Monte Carlo, and lattice techniques. And within each class, we have defined three unique methods. Looking
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Figure 9: Convergence Rates of Method 3 Techniques

at small values of n, QMC methods out-performs CMC within all three methods. At n=1,000 QMC (via
Halton sequence) Methods 1, 2 and 3 produce precise estimations to the integral I with absolute errors of
4× 10−4 and 3 × 10−4, 3.24× 10−4 respectively. QMC-Method 1, define via the Sobol sequence, produced
an absolute error of the same order as its brother sequence, Halton. The Fibonacci lattice is a respectable
contender as it owns one of the fastest convergence rates among Method 1 techniques. At n=89 the Fibonacci
lattice via Method 1 yielded an estimated value of 2.8× 10−4. This scope of precision wasn’t achieved until
n=1000 points for QMC Methods 1, 2 and 3, n=10,000 for CMC-Method 2, and n=100,000 for CMC-Method
1. An extra simulation of n=1,000,000 would be needed in order to produce this type of accuracy using our
simple grid lattice.

Referring to Figure 5, the convergence rates of CMC and QMC between each method differed by roughly
an entire order, with the exception of Method 3. Why was this difference between CMC and QMC not as
striking for Method 3? Recall the implementation of a probably density function in Method 3. This design
assigns weights to particular regions where, the function holds more area or volume. For our example, we
divided our region x = [0,0.5] in 10 different panels of equal widths. The resulting p(x) was simply the
step function defined in the x direction by these divisions and in the y direct by ”function importance” to
the overall integral. Note that our p(x) lives in a discrete setting. Consider the n=10,000 iteration where
even the smallest number of samples taken was six from panel the last panel, 10. Specifically, we are taking
six random numbers from a width of just r/10 = 0.05. One could conclude that the type of generation,
quasi or pseudo does not make a difference under such a small domain. Of course this begs the question of
setting the number of panels to approach ∞. Surely, if the p(x) used in Method 3 was precisely a probability
density function, the error difference in quasi-Monte Carlo and classic Monte Carlo simulations would be
nonexistent.

Again, in light of Figure 5, QMC Method 2 computed an approximated integral value of 0.196391 com-
pared to the actual value of 0.19635. This was the best estimation at n=10,000 among all techniques. This
approach serves as a great example of how certain methods can favor particular integrands due to properties
of function at hand. Our function, f(x) =

√
0.52 − x2 is monotonically decreasing within the interval [0, 0.5].

Notice that Figure 1 shows a low density of y function evaluations in the region [0.4, 0.5] specifically where
the function is changing rapidly. This is no surprise as recall that Method 2 is generating random samples
(either pseudo or quasi) across the x direction and not along the function itself. Consequently, the number
of expected function evaluations within a region is dependent on the functions variability within that region.
Conversely, the region [0,0.1] contains a high density of function evaluation as it’s slope is very close to one.
This aspect is beneficial to integral estimation via Method 2 as function values are coincidently small where
variability are large. Method 2 is deceiving in portraying efficiency, yet the result is a consequence of our
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integrand, rather than pure cleverness of design. Favoring techniques based on the function at hand can also
be said about the Fibonacci lattice rule, yet this rule is often ideal in d=2 regardless of concerned function’s
characteristics [5].

Lattices, by comparison, showed the benefit of QMC methods defined by a low-discrepancy sequence.
In general, the use of the term sequence implies that the construction of such a point set is independent of
the number of points n in the set. However, a lattice is defined by two variables, one being n and the other
being the generating vector, z so it’s design is very much a result of n. Lattice-Method 3 demonstrates the
hazards of using of point set that is nonextensible in n as it’s convergence rate remains relatively stagnate
among various values of n. Although we used the same lattice in Method 2, we implemented the entirety
of the point set across the region (0, 0.5], so it’s convergence rate did not suffer as the value of n did not
change.

6 Discussion: A Glimpse into Higher Dimensions

The Monte Carlo techniques (classic, quasi and via lattice) discussed thus far have been in the d=2 dimension
space. An extension into higher dimensions causes a change in accuracy among methods as well as a need for
a revaluation of the blueprint completely. In other words, convergence rates and error bounds are dimension
d dependent for many variations of Monte Carlo, with the exception of the (pseudo) CMC. This fact alone has
fueled the need for methods which are deterministic in structure yet with an added element of randomness.

Classic Monte Carlo methods using pseudo-random number generation are desirable in the since that we
know much more about its precision. As we are pulling IID samples from a known, uniform distribution, we
can compute an expected error. The variance of a random variable Y is E[(Y − E(Y ))

2
] where the notation

E[Y ] is the expected value of Y. If we define Y to be the sum of all randomly selected function values divided
by n, then

E[
Y1 + Y2 + ...+ Yn

n
] =

nA

n
= A

where A is the function’s average value defined in section 2.2. The variance of Y would then be

E[(
Y1 + Y2 + ...+ Yn

n
−A)2] =

1

n2

∑
E[(Yi −A)2] =

1

n2
nσ2 =

σ2

n

where σ2 is the variance of the function f (the variance of each Yi). The resulting expected error is σ√
n

Consequently, the rate of convergence is O(n−1/2) [5]. Although this is a relatively slow rate, it is independent
of dimension, the most appealing aspect of this approach. Note that these statistics refer to CMC-Method
1 and 2 under 3.1 and 3.2 exclusively.

The benefit of quasi-random number generation is that samples are more uniformly distributed, resulting
in a better representation of the overall space as seen in Figure 4. Although QMC methods generally are
more accurate with small values of n than CMC techniques in the context of numerical integration, they
come with little know knowledge of an error estimate. At best, a broad representation of accuracy is often
given in the form of a Koksma-Hlawka inequality [2].

|I −Qn,d(f)| ≤ |D∗(Pn)V (f)|

where I is the actual integral value and Qn,d(f) is specifically QMC-method 2 with n number of points
generated in d dimensions. V (f) is the variance of f and D∗(Pn) is the star discrepancy of the point set
Pn = {xi : i = 1..n} defined simply as the worst case discrepancy of Pn; D

∗(Pn) = sup|D(J, Pn)| where
D(J, Pn) is the (local) discrepancy described in section 4. Star refers to the fact that all vertices’s of J must
be anchored at the origin. Extreme dependency does not have this requirement. In this setting, estimated
error depends solely on star discrepancy. For this reason, many texts consider the convergence of QMC to
be O(n−1(lnn)d). QMC-Method 1 has a slightly different error rate; O(n− 1

2−
1
2d ) [9].

Even with ideal low-discrepancy sequences, like Halton or Sobol, star discrepancy increases with dimen-
sion. Not only is the error estimation for QMC techniques nonextensible in d, it’s use isn’t even practical
for large values of d; many consider the cut off to be a conservative d = 14. See Figure 10 for plots of quasi
random generation defined by the Halton sequence in R22 (displayed in dual consecutive dimensions.)
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Figure 10: Halton sequence in dual consecutive dimensions

Lattice rules bring unique design to the forefront. In our example, we used a well-known lattice defined
by a rank-1 Fibonacci lattice rule. We used the generating vector z = (1, Fk−1) where z2 is the Fk−1

Fibonacci number to generate Fk lattice points in the initial region [0,1). In general, a common way to
construct a lattice rule in d dimensions is to define the generating vector in Korobov form

z = (1, a, a2, ..., ad−1) mod n, where 1 ≤ a ≤ n− 1 and gcd(a, n) = 1 [2].

Here, we see a recipe of how lattice rules can extend into higher dimensions. However, in practice the
challenge is defining appropriate variables. Given a fixed n and d, an optimal a can be chosen in order to
minimize star discrepancy, and therefore our error bound. Yet, if d or n were to change, then the original
value of a may no longer be optimal in minimizing star discrepancy. The Korobov generating vector is far
from a one size fits alls solution.

A “componet-by-componet” construction (CBC) of z aims to extend d into higher dimensions as needed
without having to reconstruct the vector completely. This process imposes a greedy algorithm where each
component, zi is selected to minimize error. The algorithm is greedy by definition because at each iteration
the choice of zi is solely decided based on minimizing the error of the current vector z = z1, z2, ..., zi and does
not consider how future zi+1 will effect the resulting finalized z and its error. Most algorithms set z1 = 1 as
seen in the general Korobov form. Still, a CBC construction of z is nonextensible in n. A proof by Hickernell
and Niederreiter in 2003 showed that an extensible lattice, in d and in n, does exist, yet provided no insight
into how one could find such a vector z [2].

Even with a lattice defined by a CBC vector z or of the Korobov form, practical knowledge of error
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is still at best represented as a bound (Koksma-Hlawka inequality). One way to dismiss the deterministic
quality of a lattice rule is to incorporate a random shift ∆. A shifted lattice takes the form {kz

n +∆} where
k = 0, 1, ...n − 1 and ∆ ∈ [0, 1)d where, again, the braces indicate the element’s fractional representation.
This shift is an IID random sample, equipped with a known probabilistic error estimation, seen similarly
in classic Monte Carlo. Like all “non-classic” Monte Carlo techniques a shifted lattice rule aims simply to
have a better convergence rate than O(n−1/2). In fact, under specific settings shifted lattice rules have an
estimated error bound of O(n−1+δ) where δ > 0 [11]. This, of course, is independent of d and is more optimal
than CMC’s error estimation.

In conclusion, our simple example in d=2 dimensions, where f(x) =
√
r2 − x2, we saw that QMC

methods out preformed CMC methods, especially for low values of n, as quasi-random generation samples
points deterministically and therefore more uniformly. In summary, classic Monte Carlo approaches are
dimension adapted; allowing construction into higher dimensions with ease. However, its appeal both start
and stop at extendability as classic Monte Carlo approaches carry slow convergence rates in practicality.
In certain settings, QMC methods are often favorable in the context of accuracy yet suffer the curse of
dimensionality. Not only are QMC methods dependent of d, they loose their appeal completely at relatively
low values of d. Lattice rules produced convincing estimations in d=2 and are of a special class of quasi-Monte
Carlo. An extension of d however, causes a new construction of the vector z, which can be a costly task.
(Unshifted) lattices still give no practical estimated error; notably its most unappealing aspect. A lattice
defined by a CBC vector is still considered embedded as n is still bounded. Ideally, we hope to develop
numerical integration techniques which are extensible in both d and in n yet have faster (known) convergence
rate than O(n−1/2). The future strives to develop hybrid methods which house benefits of classic Monte
Carlo quasi-Monte Carlo and lattice-rule approaches.

7 Appendix: Matlab scripts

7.1 area circle.m

1 %Method 1 and 2 MC Integration
2

3 % r = radius of circle, 0.5
4 % f = function for 1/4 circle
5 % n = number of points
6 % num = row vector representing various values of n
7 % bool = boolean matrix
8 % inside = total number of points that lie within concerned region
9 % rat = ratio of inside vs. total

10 % e1 = estimated area via MC "method 1"
11 % e2 = estimated area via MC "method 2"
12 % abserr = absolute error
13 % relerr = relative error
14

15 clear;clc;close all;
16

17 rng(2014); %define seed
18 format long
19 n = [10 100 1000 10000 100000];
20 r = 0.5;
21 actual = (pi*rˆ2)/4;
22

23 for i = 1:5;
24 num = n(1,i);
25 x{i} = rand(num,1)*0.5; %x direction
26 y{i} = rand(num,1)*0.5; %y direction
27 f{i} = sqrt(r.ˆ2 - x{i}.ˆ2); %function evaluations for random x's
28 bool{i} = y{i}≤f{i}; %returns T/F
29 inside(i) = sum(bool{i});
30 ratio(i) = inside(i)/num;
31 e1(i) = ratio(i)*rˆ2; %integral estimation via "method 1"
32 e2(i) = (sum(f{i})/num)*r; %integral estimation via "method 2"
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33

34 %Determine Error
35 abserr e1(i) = abs(e1(i)-actual);
36 abserr e2(i) = abs(e2(i)-actual);
37 end
38

39 relerr e1 = abserr e1 / actual;
40 relerr e2 = abserr e2 / actual;
41

42

43 %Display Results
44 fprintf('Actual Value of Integral: %1.6f\n', actual);
45 fprintf('\n');
46 fprintf(' N | ESTIMATE | ABSOLUTE ERROR | RELATIVE ERROR \n');
47 fprintf('\n');
48 fprintf(' Monte Carlo Method 1 \n')
49 fprintf('\n');
50 fprintf('----------|----------------|----------------------|----------------------\n');
51 for k = 1:5
52 fprintf('%8.0f | %1.6f | %1.6e | %1.6e \n',n(k), e1(k), ...

abserr e1(k), relerr e1(k))
53 end
54 fprintf('\n');
55 fprintf(' Monte Carlo Method 2 \n');
56 fprintf('\n');
57 fprintf('----------|----------------|----------------------|----------------------\n');
58 for k = 1:5
59 fprintf('%8.0f | %1.6f | %1.6e | %1.6e \n',n(k), e2(k), ...

abserr e2(k), relerr e2(k))
60

61 end
62 return
63

64 %Plots :)
65 f1 = figure;
66 % subplot(2,2,1)
67 xx = 0:0.0001:0.5;
68 yy = sqrt(r.ˆ2-xx.ˆ2);
69 plot(yy,xx,'Linewidth',2); hold on;
70 scatter(x{2},y{2},'g.');
71 title('Method 1 with n=100')
72 axis([0 0.5 0 0.5]);
73 axis square
74 matlab2tikz('figurehandle', f1, 'MC1 1.tex', 'showInfo', false, 'checkForUpdates', ...

false,'height', '\figureheight', 'width', '\figurewidth', 'standalone', true);
75

76 f2 = figure;
77 % subplot(2,2,3)
78 plot(yy,xx,'Linewidth',2); hold on;
79 scatter(x{2},f{2},'go');
80 title('Method 2 with n=100')
81 axis([0 0.5 0 0.5]);
82 axis square
83 matlab2tikz('figurehandle', f2, 'MC1 2.tex', 'showInfo', false, 'checkForUpdates', ...

false,'height', '\figureheight', 'width', '\figurewidth', 'standalone', true);
84

85 f3 = figure;
86 % subplot(2,2,2)
87 semilogy(n,abserr e1)
88 xlabel('number of points')
89 ylabel('absolute error')
90 title('Method 1 Convergence')
91 %xlim([10,100000])
92 axis([0 10ˆ5 10ˆ-5 10ˆ-1]);
93 axis square
94 matlab2tikz('figurehandle', f3, 'MC2 1.tex', 'showInfo', false, 'checkForUpdates', ...

false,'height', '\figureheight', 'width', '\figurewidth', 'standalone', true);
95
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96 f4 = figure;
97 % subplot(2,2,4)
98 semilogy(n,abserr e2);
99 xlabel('number of points')

100 ylabel('absolute error')
101 title('Method 2 Convergence')
102 %xlim([10,100000])
103 axis([0 10ˆ5 10ˆ-5 10ˆ-1]);
104 axis square
105 matlab2tikz('figurehandle', f4, 'MC2 2.tex', 'showInfo', false, 'checkForUpdates', ...

false,'height', '\figureheight', 'width', '\figurewidth', 'standalone', true);

7.2 MCmethod3.m

1 %Method 3 MC Integration
2

3 clear;clc;close all;
4

5 rng(2014); %define seed
6 r = 0.5;
7 xmidd = 0.025:0.05:0.475;
8 xinterval = 0:0.05:r;
9 f = @(x) sqrt(r.ˆ2 - x.ˆ2);

10 ymidd = f(xmidd);
11 ysum = sum(ymidd);
12 actual = (pi*rˆ2)/4;
13

14 %Preallocate **is this really necessary?
15 e3 = zeros(1,5);
16 p = zeros(1,10);
17

18 for n = 1:5
19 num = 10ˆn;
20 for i = 1:10
21 p(i) = f(xmidd(i))/ysum;
22 pts int(i) = p(i)*num;
23 end
24

25 %pts int needs to be all integer values
26 rnd pts = round(pts int);
27

28 %-----------If simple round function does not sum to n...---------------%
29

30 if sum (rnd pts) < num %need to add a point in appropriate panel
31 for k = 1:10;
32 abs diff(k) = abs(rnd pts(k) - pts int(k));
33 end
34 [val index] = max(abs diff);
35 rnd pts(index) = rnd pts(index) + 1; %point added
36 end
37

38 if sum (rnd pts) > num %need to subract a point in appropriate panel
39 for k = 1:10;
40 abs diff(k) = abs(rnd pts(k) - pts int(k));
41 end
42 [val index] = max(abs diff);
43 rnd pts(index) = rnd pts(index) - 1; %point subtracted
44 end
45

46 s = sum(rnd pts); %check
47

48 %-----------------------------------------------------------------------%
49

50 %Create "Random" X Values
51 srt = 1;
52 for j = 1:10 %# of panels

21



53 last = srt + rnd pts(j) - 1;
54 xm3(srt:last) = rand(rnd pts(j),1)*0.05 + xinterval(j);
55

56 %Evaluate Function Values
57 ym3(srt:last) = f(xm3(srt:last));
58 area(j) = (0.05)*((sum(ym3(srt:last)))/rnd pts(j));
59 srt = last + 1;
60 end
61 e3(n) = sum(area);
62

63 %Determine Error
64 abserr e3(n) = abs(e3(n)-actual);
65 end
66

67 relerr e3 = abserr e3 / actual;
68

69 %Display Results
70 fprintf('Actual Value of Integral: %1.6f\n', actual);
71 fprintf('\n');
72 fprintf(' Monte Carlo Method 3 \n')
73 fprintf('\n');
74 fprintf(' N | ESTIMATE | ABSOLUTE ERROR | RELATIVE ERROR \n');
75 fprintf('----------|----------------|----------------------|----------------------\n');
76 for k = 1:5
77 fprintf('%8.0f | %1.6f | %1.6e | %1.6e \n',10ˆk, e3(k), ...

abserr e3(k), relerr e3(k))
78 end
79

80 %Plot Results
81 f1 = figure;
82 semilogy([10,100,1000,10000,100000],abserr e3)
83 xlabel('number of points')
84 ylabel('absolute error')
85 title('Method 3 Convergence')
86 axis square
87 matlab2tikz('figurehandle', f1, 'MC3 1.tex', 'showInfo', false, 'checkForUpdates', ...

false,'height', '\figureheight', 'width', '\figurewidth', 'standalone', true);

7.3 halton.m

1 function [ u ] = halton( p,n )
2 %Halton sequence in base (prime) p.
3 %Generates n quasi-random points in [0,1].
4

5 if n ==1
6 u = 1/p;
7 return;
8 end
9

10 b = zeros(ceil(log(n)/log(p)),1); %largest number of digits
11 for j = 1:n
12 i = 1;
13 b(1) = b(1)+1; %add one to current integer;
14 while b(i) > p-1+eps %this loop does carry out in base p
15 b(i) = 0;
16 i = i + 1;
17 b(i) = b(i) + 1;
18 end
19 u(j) = 0;
20 for k = 1:length(b(:)) %add upp reverse digits
21 u(j) = u(j) + b(k)*pˆ(-k);
22 end
23 end
24

25

26 end
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7.4 QMCmethods123.m

1 % QMC Integration: Methods 1,2 and 3
2

3 % r = radius of circle, 0.5
4 % f = function for 1/4 circle
5 % n = number of points
6 % inside = total number of points that lie within concerned region
7 % e1q = estimated area via QMC "method 1"
8 % e2q = estimated area via QMC "method 2"
9 % e3q = estimated area via QMC "method 3"

10 % abserrq = absolute error
11 % relerrq = relative error
12

13 clear;clc;close all;
14

15 rng(2014); %define seed
16 format long
17 k = 5;
18 r = 0.5;
19 n = 10ˆk;
20 actual = (pi*rˆ2)/4;
21 x = halton(2,n)'*r;
22 y = halton(3,n)'*r;
23 f = sqrt(r.ˆ2 - x.ˆ2);
24 inside = (x.ˆ2 + y.ˆ2) ≤ rˆ2;
25

26 %Method 1 and Method 2
27 for i = 1:k;
28 %integral estimation via "method 1"
29 e1q(i) = rˆ2 * sum(inside(1:10ˆi)) / (10ˆi);
30 %integral estimation via "method 2"
31 e2q(i) = r*sum(f(1:10ˆi))/(10ˆi);
32

33 %Determine Error
34 abserr e1q(i) = abs(e1q(i)-actual);
35 abserr e2q(i) = abs(e2q(i)-actual);
36 end
37

38 relerr e1q = abserr e1q / actual;
39 relerr e2q = abserr e2q / actual;
40

41 %Display Results
42 fprintf('Actual Value of Integral: %1.6f\n', actual);
43 fprintf('\n');
44 fprintf(' N | ESTIMATE | ABSOLUTE ERROR | RELATIVE ERROR \n');
45 %fprintf('\n');
46 fprintf(' Quasi Monte Carlo Method 1 \n')
47 %fprintf('\n');
48 fprintf('----------|----------------|----------------------|----------------------\n');
49 for k = 1:5
50 fprintf('%8.0f | %1.6f | %1.6e | %1.6e \n',10ˆk, e1q(k), ...

abserr e1q(k), relerr e1q(k))
51 end
52 %fprintf('\n');
53 fprintf(' Quasi Monte Carlo Method 2 \n');
54 %fprintf('\n');
55 fprintf('----------|----------------|----------------------|----------------------\n');
56 for k = 1:5
57 fprintf('%8.0f | %1.6f | %1.6e | %1.6e \n',10ˆk, e2q(k), ...

abserr e2q(k), relerr e2q(k))
58

59 end
60

61 %Method 3
62 xmidd = 0.025:0.05:0.475;
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63 xinterval = 0:0.05:r;
64 f = @(x) sqrt(r.ˆ2 - x.ˆ2);
65 ymidd = f(xmidd);
66 ysum = sum(ymidd);
67

68 %Preallocate
69 e3q = zeros(1,5);
70 p = zeros(1,10);
71

72 for n = 1:5
73 num = 10ˆn;
74 for i = 1:10
75 p(i) = f(xmidd(i))/ysum;
76 pts int(i) = p(i)*num;
77 end
78

79 %pts int needs to be all integer values
80 rnd pts = round(pts int);
81

82 %-----------If simple round function does not sum to n...---------------%
83

84 if sum (rnd pts) < num %need to add a point in appropriate panel
85 for k = 1:10;
86 abs diff(k) = abs(rnd pts(k) - pts int(k));
87 end
88 [val index] = max(abs diff);
89 rnd pts(index) = rnd pts(index) + 1; %point added
90 end
91

92 if sum (rnd pts) > num %need to subract a point in appropriate panel
93 for k = 1:10;
94 abs diff(k) = abs(rnd pts(k) - pts int(k));
95 end
96 [val index] = max(abs diff);
97 rnd pts(index) = rnd pts(index) - 1; %point subtracted
98 end
99

100 s = sum(rnd pts); %check
101

102 % since we know how long the sequence will need to be, create it and store it
103 h = halton(2,max(rnd pts));
104 %-----------------------------------------------------------------------%
105

106 %Create "Q-Random" X Values
107 srt = 1;
108 for j = 1:10 %# of panels
109 last = srt + rnd pts(j) - 1;
110 xm3(srt:last) = h(1:rnd pts(j))'*0.05 + xinterval(j);
111

112 %Evaluate Function Values
113 ym3(srt:last) = f(xm3(srt:last));
114 area(j) = (0.05)*((sum(ym3(srt:last)))/rnd pts(j));
115 srt = last + 1;
116 end
117 e3q(n) = sum(area);
118

119 %Determine Error
120 abserr e3q(n) = abs(e3q(n)-actual);
121 end
122

123 relerr e3q = abserr e3q / actual;
124

125 %Display Results
126 %fprintf('\n');
127 fprintf(' Quasi Monte Carlo Method 3 \n')
128 %fprintf('\n');
129 fprintf('----------|----------------|----------------------|----------------------\n');
130 for k = 1:5
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131 fprintf('%8.0f | %1.6f | %1.6e | %1.6e \n',10ˆk, e3q(k), ...
abserr e3q(k), relerr e3q(k))

132 end
133

134 %Plot convergence rates for QMC
135 figure
136 num = [10 100 1000 10000 100000];
137 semilogy(num,abserr e1q,'r',num,abserr e2q,'g',num,abserr e3q,'b');
138 xlabel('number of points')
139 ylabel('absolute error')
140 title('QMC Convergence Rates')
141 axis square
142 legend('QMC Method 1', 'QMC Method 2', 'QMC Method 3')
143

144 %Plot rates for QMC and CMC
145 abserr e1 = [0.028650459150638 0.001349540849362 0.003849540849362 0.002300459150638 ...

0.000047959150638];
146 abserr e2 = [0.006682937312325 0.003727526218243 0.002002912520977 0.000642413785594 ...

0.000161776561111];
147 abserr e3 = [0.004316000562404 0.000270011858544 0.000225372123501 0.000076972525891 ...

0.000002222747864];
148

149 f5 = figure;
150 semilogy(num,abserr e1q,'r', num,abserr e2q,'g', num,abserr e3q,'b', num,abserr e1,'r:', ...

num,abserr e2,'g:', num,abserr e3,'b:', 'LineWidth', 0.65);
151 xlabel('number of points')
152 ylabel('absolute error')
153 title('CMC and QMC Convergence Rates')
154 axis square
155 legend('QMC Method 1', 'QMC Method 2', 'QMC Method 3','CMC Method 1', 'CMC Method 2', 'CMC ...

Method 3')
156 matlab2tikz('figurehandle', f5, 'QMCvsCMC.tex', 'showInfo', false, 'checkForUpdates', ...

false,'height', '\figureheight', 'width', '\figurewidth', 'standalone', true);

7.5 lattice.m

1 % Plots the N lattice points based upon the input vector z
2 %
3 % USAGE: lattice(34);
4

5 function X = lattice(N)
6 [N, ii] = fib(N); % this makes N the closest Fibonacci number
7 ii = ii - 1;
8

9 % this makes z(2) the previous Fibonacci number
10 z = [ 1 floor(((1+sqrt(5))ˆii-(1-sqrt(5))ˆii)/(2ˆii*sqrt(5)))];
11

12 X = latticepts(z,N);
13 % fprintf('We used z = [%d %d] and N = %d.\n',z,N);
14 % plot(X(:,1),X(:,2),'.b');
15 end
16

17 % computes the N lattice points based upon the vector z
18 function X = latticepts(z,N)
19 X = [1:N]'*z/N;
20 X = X - floor(X);
21 end
22

23 % computes the nearest Fibonacci number
24 function [N, ii] = fib(N)
25

26 ii = 0;
27 c = 0;
28 a = 0;
29 b = 1;
30 while (c ≤ N)
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31 ii = ii + 1;
32 c = a + b;
33 a = b;
34 b = c;
35 end
36

37 if ((N-a) > (c-N))
38 N = c;
39 ii = ii + 1;
40 else
41 N = a;
42 end
43 end

7.6 Sobol.m

1 %Solbol Squence
2 clear;clc;close all;
3

4 rng(2014); %define seed
5 format long
6 r = 0.5;
7 actual = (pi*rˆ2)/4;
8

9

10 sol = sobolset(2); %dementions
11

12 k=5
13 X = net(sol,10ˆk)*r;
14 x = X(:,1)
15 y = X(:,2);
16 inside = (x.ˆ2 + y.ˆ2) ≤ rˆ2;
17

18 for i = 1:k
19 if i == 2 %Plot example
20 figure
21 plot(x(1:100),y(1:100),'g.')
22 title('Sobol Sequence with N = 100')
23 end
24 eS(i) = rˆ2 * sum(inside(1:10ˆi)) / 10ˆi;
25 abserrS(i) = abs(eS(i)-actual);
26 end
27 relerrS = abserrS / actual;
28

29 %Display Results
30 fprintf('Actual Value of Integral: %1.6f\n', actual);
31 fprintf('\n');
32 fprintf(' Monte Carlo Method via Sobol "Lattice/Sequence?" ...

\n')
33 fprintf(' N | ESTIMATE | ABSOLUTE ERROR | RELATIVE ERROR \n');
34 %fprintf('\n');
35 fprintf('----------|----------------|----------------------|----------------------\n');
36 for i = 1:k
37 fprintf('%8.0f | %1.6f | %1.6e | %1.6e \n', 10ˆi, eS(i), ...

abserrS(i), relerrS(i))
38 end

7.7 MClattice sobol.m

1 clear;clc;close all;
2 % colormap lines;
3 % CMap = colormap;
4 CMap = [
5 0.000 0.447 0.741
6 0.850 0.325 0.098
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7 0.929 0.694 0.125
8 0.494 0.184 0.556
9 0.466 0.674 0.188

10 0.301 0.745 0.933
11 0.635 0.078 0.184
12 ];
13

14 rng(2014); %define seed
15 format long
16 r = 0.5;
17 actual = (pi*rˆ2)/4;
18

19 %---------------------------Fibonacci Lattice--------------------------%
20

21 % Compute the first 26 Fibonacci numbers
22 fib(1) = 0; fib(2) = 1;
23 for i = 3:26,
24 fib(i) = fib(i-1)+fib(i-2);
25 end
26

27 for i = 1:length(fib)-2
28 L = lattice(fib(i+2))*r;
29 x = L(:,1);
30 y = L(:,2);
31 if i == 10 %Plot example
32 figure
33 plot(x,y,'r.')
34 title('Fibonacci Lattice with N = 89')
35 end
36 inside = (x.ˆ2 + y.ˆ2) ≤ rˆ2;
37 eL(i) = rˆ2 * sum(inside) / fib(i+2);
38 abserr(i) = abs(eL(i)-actual);
39 end
40 relerr = abserr / actual;
41

42 %Display Results
43 fprintf('Actual Value of Integral: %1.6f\n', actual);
44 fprintf('\n');
45 fprintf(' Monte Carlo Method via Fibonacii Lattice \n')
46 fprintf(' N | ESTIMATE | ABSOLUTE ERROR | RELATIVE ERROR \n');
47 %fprintf('\n');
48 fprintf('----------|----------------|----------------------|----------------------\n');
49 for i = 1:length(fib)-2
50 fprintf('%8.0f | %1.6f | %1.6e | %1.6e \n', fib(i+2), eL(i), ...

abserr(i), relerr(i))
51 end
52

53 %-----------------------------Product Rule Lattice--------------------%
54

55 %N=6;
56 Prod = [fib(3:12) 10ˆ2 fib(13:21) 10ˆ4 fib(22:end) 316ˆ2];
57 for i= 1:length(fib)+1 %2:2:N
58 [x y] = meshgrid(0:r/(sqrt(Prod(i))-1):r, 0:r/(sqrt(Prod(i))-1):r);
59 [mx nx] = size(x);
60 Ppts(i) = mx*nx;
61 x = reshape(x,[mx*nx 1]);
62 y = reshape(y,[mx*nx 1]);
63 inside = (x.ˆ2+y.ˆ2) ≤ rˆ2;
64 if i == 10
65 figure
66 plot(x, y,'.') %Plot example%
67 str title = sprintf('Product Rule with N=%d points',Ppts(i));
68 title(str title);
69 end
70 %estimate%
71 eLgrid(i) = rˆ2*sum(inside)/Ppts(i);
72 abserr eLgrid(i) = abs(eLgrid(i)-actual);
73 end
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74 relerr eLgrid = abserr eLgrid / actual;
75

76 %Display Results
77 fprintf('\n');
78 fprintf('Actual Value of Integral: %1.6f\n', actual);
79 fprintf('\n');
80 fprintf(' Monte Carlo Method 1 via "Product Rule" Lattice ...

\n')
81 fprintf(' N | ESTIMATE | ABSOLUTE ERROR | RELATIVE ERROR \n');
82 %fprintf('\n');
83 fprintf('----------|----------------|----------------------|----------------------\n');
84 for i = 1:length(fib)+1
85 fprintf('%8.0f | %1.6f | %1.6e | %1.6e \n', Ppts(i), eLgrid(i), ...

abserr eLgrid(i), relerr eLgrid(i))
86 end
87

88 %-----------------------------Sobol Squence QMC Method 1---------------------%
89 %sol = sobolset(2); %dementions
90

91 k=5
92 %X = net(sol,10ˆk)*r;
93 %x = X(:,1)
94 %y = X(:,2);
95 %inside = (x.ˆ2 + y.ˆ2) ≤ rˆ2;
96

97 %for i = 1:k
98 % if i == 2 %Plot example
99 % figure

100 % plot(x(1:100),y(1:100),'g.')
101 % title('Sobol Sequence with N = 100')
102 % end
103 % eS(i) = rˆ2 * sum(inside(1:10ˆi)) / 10ˆi;
104 % abserrS(i) = abs(eS(i)-actual);
105 %end
106

107 %If statistical toolbox not available, here are the need vectors
108 eS = [0.225000000000000 0.202500000000000 0.196500000000000 0.196375000000000 ...

0.196347500000000];
109 abserrS = [0.028650459150638 0.006150459150638 0.000150459150638 0.000025459150638 ...

0.000002040849362]
110 relerrS = abserrS / actual;
111

112

113 %Display Results
114 fprintf('Actual Value of Integral: %1.6f\n', actual);
115 fprintf('\n');
116 fprintf(' Quasi Monte Carlo Method via Sobol Sequence \n')
117 fprintf(' N | ESTIMATE | ABSOLUTE ERROR | RELATIVE ERROR \n');
118 %fprintf('\n');
119 fprintf('----------|----------------|----------------------|----------------------\n');
120 for i = 1:k
121 fprintf('%8.0f | %1.6f | %1.6e | %1.6e \n', 10ˆi, eS(i), ...

abserrS(i), relerrS(i))
122 end
123

124

125 %Plot Convergence Rates for Fib Latt,Prod Latt, CMC Method 1, and QMC Method 1
126 f6 = figure;
127 abserr e1 = [0.028650459150638 0.001349540849362 0.003849540849362 0.002300459150638 ...

0.000047959150638];
128 abserr e1q = [0.000676173729491 0.001406437708150 0.000323521389740 0.000054725639127 ...

0.000006721893680];
129 num = [1 10000];
130 num = 10.ˆ[1:5];
131 semilogy(fib(8:end),abserr(6:end),'Color', CMap(1,:), 'LineWidth', .6); hold on;
132 semilogy(Ppts ,abserr eLgrid,'Color', CMap(2,:), 'LineWidth', .6);
133 semilogy(num, abserr e1,'Color', CMap(3,:), 'LineWidth', .6);
134 semilogy(num, abserr e1q,'Color', CMap(4,:), 'LineWidth', .6);
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135 semilogy(num, abserrS,'Color', CMap(5,:), 'LineWidth', .6);
136 xlabel('number of points')
137 ylabel('absolute error')
138 title('Method(s) 1 Convergence Rates')
139 axis square
140 %xlim([1,10000])
141 legend('Fibonacci Lattice', 'Product Rule Lattice', 'CMC', 'QMC-Halton', 'QMC-Sobol')
142 matlab2tikz('figurehandle', f6, 'LatticevsMC2.tex', 'showInfo', false, 'checkForUpdates', ...

false,'height', '\figureheight', 'width', '\figurewidth', 'standalone', true);
143

144 f7 = figure;
145 x = linspace(0,10ˆ5,1000);
146 %Fibonacci
147 F = fib(8:end)'; E = abserr(6:end)';
148 C = [ ones(length(F),1) log(F)]\log(E);
149 B = C(1)+C(2)*log(x);
150 semilogy(F,E,'+','Color',CMap(1,:));hold on;
151 p1 = semilogy(x,exp(B),'-','Color',CMap(1,:));
152

153 % Product Rule
154 F = Ppts(8:end)'; E = abserr eLgrid(8:end)';
155 C = [ ones(length(F),1) log(F)]\log(E);
156 B = C(1)+C(2)*log(x);
157 semilogy(F,E,'+','Color',CMap(2,:));
158 p2 = semilogy(x,exp(B),'-','Color',CMap(2,:));
159

160 % CMC
161 F = 10.ˆ[1:5]'; E = abserr e1';
162 C = [ ones(length(F),1) log(F)]\log(E);
163 B = C(1)+C(2)*log(x);
164 semilogy(F,E,'+','Color',CMap(3,:));
165 p3 = semilogy(x,exp(B),'-','Color',CMap(3,:));
166

167 % QMC
168 F = 10.ˆ[1:5]'; E = abserr e1q';
169 C = [ ones(length(F),1) log(F)]\log(E);
170 B = C(1)+C(2)*log(x);
171 semilogy(F,E,'+','Color',CMap(4,:));
172 p4 = semilogy(x,exp(B),'-','Color',CMap(4,:));
173

174 %Sobol
175 F = 10.ˆ[1:5]'; E = abserrS';
176 C = [ ones(length(F),1) log(F)]\log(E);
177 B = C(1)+C(2)*log(x);
178 semilogy(F,E,'+','Color',CMap(5,:));
179 p5 = semilogy(x,exp(B),'-','Color',CMap(5,:));
180

181 xlabel('number of points')
182 ylabel('absolute error')
183 title('Method(s) 1 Convergence Rates Linear Fit')
184 legend([p1 p2 p3 p4 p5],'Fibonacci Lattice', 'Product Rule Lattice', 'CMC', 'QMC-Halton', ...

'QMC-Sobol');
185 xlim([10 100000]);
186

187 matlab2tikz('figurehandle', f7, 'LatticevsMC2 LinearFit.tex', 'showInfo', false, ...
'checkForUpdates', false,'height', '\figureheight', 'width', '\figurewidth', ...
'standalone', true);

7.8 Method2n3 Lattice.m

1 %Method 2 and 3 Lattice Integration
2

3 clear;clc;close all;
4 rng(2014); %define seed
5 format long
6 r = 0.5;

29



7 actual = (pi*rˆ2)/4;
8 f = @(x) sqrt(r.ˆ2 - x.ˆ2);
9 k = 5;

10

11 %Method 2
12 for i = 1:k;
13 xold = [0: r/10ˆi : .5];
14 x = xold(1:10ˆi);
15 e2L(i) = r*sum(f(x))/(10ˆi);
16

17 %Determine Error
18 abserr e2L(i) = abs(e2L(i)-actual);
19 end
20

21 relerr e2L = abserr e2L / actual;
22

23 %Display Results
24 fprintf('Actual Value of Integral: %1.6f\n', actual);
25 fprintf('\n');
26 fprintf(' N | ESTIMATE | ABSOLUTE ERROR | RELATIVE ERROR \n');
27 %fprintf('\n');
28 fprintf(' Lattice Monte Carlo Method 2 \n');
29 %fprintf('\n');
30 fprintf('----------|----------------|----------------------|----------------------\n');
31 for k = 1:5
32 fprintf('%8.0f | %1.6f | %1.6e | %1.6e \n',10ˆk, e2L(k), ...

abserr e2L(k), relerr e2L(k))
33

34 end
35

36 abserr e2 = [0.006682937312325 0.003727526218243 0.002002912520977 0.000642413785594 ...
0.000161776561111];

37 abserr e2q = [0.015010416574067 0.002490746973378 0.000300146098825 0.000040985324138 ...
0.000005139678088];

38 num = 10.ˆ[1:5];
39

40 %Plot Results
41 f1 = figure;
42 semilogy(num,abserr e2L, num, abserr e2, num, abserr e2q)
43 xlabel('number of points')
44 ylabel('absolute error')
45 title('CMC, QMC and Lattice Method 2 Convergence')
46 axis square
47 legend('Lattice Method 2', 'CMC Method 2', 'QMC Method 2')
48 matlab2tikz('figurehandle', f1, 'Method2 Lattice.tex', 'showInfo', false, 'checkForUpdates', ...

false,'height', '\figureheight', 'width', '\figurewidth', 'standalone', true);
49

50

51 %--------------------------- Lattice - Method 3 ----------------------------------%
52

53 xmidd = 0.025:0.05:0.475;
54 xinterval = 0:0.05:r;
55 f = @(x) sqrt(r.ˆ2 - x.ˆ2);
56 ymidd = f(xmidd);
57 ysum = sum(ymidd);
58

59 %Preallocate
60 e3L = zeros(1,5);
61 p = zeros(1,10);
62

63 for n = 1:5
64 num = 10ˆn;
65 for i = 1:10
66 p(i) = f(xmidd(i))/ysum;
67 pts int(i) = p(i)*num;
68 end
69

70 %pts int needs to be all integer values
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71 rnd pts = round(pts int);
72

73 %-----------If simple round function does not sum to n...---------------%
74

75 if sum (rnd pts) < num %need to add a point in appropriate panel
76 for k = 1:10;
77 abs diff(k) = abs(rnd pts(k) - pts int(k));
78 end
79 [val index] = max(abs diff);
80 rnd pts(index) = rnd pts(index) + 1; %point added
81 end
82

83 if sum (rnd pts) > num %need to subract a point in appropriate panel
84 for k = 1:10;
85 abs diff(k) = abs(rnd pts(k) - pts int(k));
86 end
87 [val index] = max(abs diff);
88 rnd pts(index) = rnd pts(index) - 1; %point subtracted
89 end
90

91 s = sum(rnd pts); %check
92

93 % since we know how long the sequence will need to be, create it and store it
94 h = linspace(0,0.05,max(rnd pts));
95 %-----------------------------------------------------------------------%
96

97 %Create X Values according to "Lattice" with z = {1}
98 srt = 1;
99 for j = 1:10 %# of panels

100 last = srt + rnd pts(j) - 1;
101 % xm3(srt:last) = halton(2,rnd pts(j))'*0.05 + xinterval(j);
102 xm3(srt:last) = h(1:rnd pts(j))' + xinterval(j);
103

104 %Evaluate Function Values
105 ym3(srt:last) = f(xm3(srt:last));
106 area(j) = (0.05)*((sum(ym3(srt:last)))/rnd pts(j));
107 srt = last + 1;
108 end
109 e3L(n) = sum(area);
110

111 %Determine Error
112 abserr e3L(n) = abs(e3L(n)-actual);
113

114 %Plot Procedure
115 if n == 2;
116 f2 = figure;
117 offset = 0;
118 plot(xm3,ym3,'.'); hold on;
119 for ii = 1:length(rnd pts)
120 plot(xm3(1+offset),ym3(1+offset),'r.');hold on;
121 title('Method 3 via 1-Dimensional "Lattice" with n=100')
122 offset = offset+rnd pts(ii);
123 end
124 axis([0 0.5 0 0.5]);
125 axis square;
126 matlab2tikz('figurehandle', f2, 'MC3 Lattice.tex', 'showInfo', false, ...

'checkForUpdates', false,'height', '\figureheight', 'width', '\figurewidth', ...
'standalone', true);

127 end;
128 end
129

130 relerr e3L = abserr e3L / actual;
131

132 %Display Results
133 fprintf('Actual Value of Integral: %1.6f\n', actual);
134 fprintf('\n');
135 fprintf(' Lattice Monte Carlo Method 3 \n')
136 fprintf('\n');
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137 fprintf(' N | ESTIMATE | ABSOLUTE ERROR | RELATIVE ERROR \n');
138 fprintf('----------|----------------|----------------------|----------------------\n');
139 for k = 1:5
140 fprintf('%8.0f | %1.6f | %1.6e | %1.6e \n',10ˆk, e3L(k), ...

abserr e3L(k), relerr e3L(k))
141 end
142

143

144 abserr e3 = [0.004316000562404 0.000270011858544 0.000225372123501 0.000076972525891 ...
0.000002222747864];

145 abserr e3q = [0.000676173729491 0.001406437708150 0.000323521389740 0.000054725639127 ...
0.000006721893680];

146 num = 10.ˆ[1:5];
147

148 %Plot Results
149 f3 = figure;
150 semilogy(num,abserr e3L, num, abserr e3, num, abserr e3q)
151 xlabel('number of points')
152 ylabel('absolute error')
153 title('CMC, QMC and Lattice Method 3 Convergence')
154 axis square
155 legend('Lattice Method 3', 'CMC Method 3', 'QMC Method 3')
156 matlab2tikz('figurehandle', f3, 'Method3 Lattice.tex', 'showInfo', false, 'checkForUpdates', ...

false,'height', '\figureheight', 'width', '\figurewidth', 'standalone', true);
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